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tension of this excluded range can then be obtained from
energy loss from Red Giants and the Sun considered in
Ref. [7] and reconsidered here to give (10�3:5 � m~g � 50)
eV. We show that further restrictions on m~g can be ob-
tained by using the recent result of Kolb, Mohapatra and
Teplitz [13] which says that if the mean free path of the
photon is more than ten times that of the S=P particles,
then the photon luminosity of stars will be severely de-
pleted. Requiring that the photon luminosity depletion
does not conict with observations, we �nd the new ex-
cluded range on m~g to stretch further down to 3� 10�6

eV. Combining all these results then enables us to derive
the excluded range for m~g for this special class of models
with superlight S=P to be: (3 � 10�6 � m~g � 50) eV
provided mS=P � 1 keV . This is the most severe lower
bound on m~g to date.
We also study the e�ect of S=P production in the BBN

era of the early universe and conclude that unless the
gravitino mass is larger than an eV, the success of the
big bang model in explaining the observed primordial He-
lium abundance will be hard to understand. This bound
is considerably better than the one derived in [9]. We
note in passing that recent interpretation of the CDF
e+e� event in terms of a light gravitino decay [14] of
the photino seems to imply a gravitino mass less than
250 eV or so which is allowed by our considerations.
To start our discussion let us write down the coupling

of the S=P particles to the photons [4] that results from
the superHiggs mechanism [15] of the supergravity theo-
ries:

e�1L = ��
4

r
2

3

�
M~

m~g

��
SF��F�� + P ~F��F��

�
; (1)

where M~ is the photino mass and � =
p
8�=MP`. ( ~F

is the dual of the photon �eld strength.) We did not
display the S=P couplings to the electrons since they do
not carry the (m~g)

�1 enhancement in their couplings and
are therefore negligible in their contribution to the pro-
cess  + e� ! S=P + e� compared to interactions shown
in Eq. (1). This scattering channel arises from the Pri-
mako� process involving the S=P vertex at one end
of the Feynman diagram and the usual electromagnetic
coupling at the other. One can then calculate the cross-
section for the production S=P particles in e� +  colli-
sions to be [7]

�(e� ! S=Pe�) =
�2�em

6

�
�
M~

m~g

�2�
2 ln

�
E

mS=P

�
+ 2 ln2� 1

�
: (2)

To obtain an estimate of the amount of energy lost from
the supernova core in S=P emission, we write

QS=P ' V nne�(e ! S=Pe)ES=P (3)

Using ES=P ' 150 MeV and ne ' 1:6 � 1038 cm�3

and n(T ) ' 2�(3)
�2 T 3 and requiring that QS=P � 1052

ergs/sec., we �nd that
M~

m~g
� 109:5. For the photino mass

of 100 GeV, this implies m~g � 30 eV.
Since the S=P can decay to two photons with a decay

rate given by �S=P ' �2

96�

�
M~

m~g

�2
m3
S=P , it is easy to check

that for M~ = 100 GeV, S=P particles heavier than 10
MeV will have decay length of about 300RSN . We there-
fore conservatively assume that the above bound holds
for mS=P � 10 MeV.
In the derivation of the lower bound on the gravitino

mass given above, we have assumed that all the S=P
particles produced escape the supernova core. To check
this let us calculate the mean free path �S=P of the S=P

particles: �S=P � (ne�(S=Pe ! e))�1. We �nd that

�S=P � 1010
� m~g

30 eV

�2
cm. Thus as long as m~g � 0:3 eV,

the �S=P � RSN and the S=P particles escape after pro-
duction and our bound applies. Once the mass of the
gravitino is below this value (0:3 eV), the S=P particles
get trapped and form an S=P sphere and the luminosity
in S=P depends on the radius RS=P of this sphere. Using
the method given in [16], we can calculate the RS=P and

we �nd it to be RS=P �
�
5
4�

2�emncRc

�
M~

m~g

�2�1=2

Rc.

In this expression, nc and Rc denote respectively the
core number density and the core radius. Here we have
assumed that the density of the supernova goes down
like �(R) = �C(Rc=R)

3 [17]. Now demanding that
QS=P

Q�
�
�
TS=P
T�

�4 �RS=P

R�

�2
� 10�1, we �nd the allowed

range for gravitino masses to be for m~g � 10�1:5 eV.
Thus SN1987A observations seem to exclude the domain
of masses between (10�1:5 � m~g � 30) eV.
To explore further restrictions on the gravitino mass,

let us look at the stellar energy loss via S=P emission.
It is well-known that if light scalar/pseudo-scalar parti-
cle have two photon couplings, then via the Primako�
process, they constribute to energy loss in stars [18,19].
There are two ways to get such constraints. One is to
look for the parameter domain for which the mean free
path for the S=P particle is larger than the stellar ra-
dius (� 1011 cm). In this case, any production of S=P
particle subtracts from the photon luminosity and must
therefore be a small fraction of the observed luminosity-
i.e. the rate of energy loss d��=dt � 17 ergs gm�1 sec�1

for the Sun and d�RG=dt � 102 erg gm�1 sec�1 for the
Red Giant. This point has already been noted in [7]. To
derive the relevant constraints for this case, we �rst note
that the mean free path for the S=P particle is given

roughly by �S=P = 1
�Sene

� 1041
�
m~g

M~

�2
cm. This im-

plies that mean free path exceed the typical solar radius
for m~g � 10�3:5 eV. For this range of masses the energy
loss rate is given by (considering scattering o� electrons
as well as protons):

d�=dt ' (ne + np)n�E

�
(4)

2



where � denotes the core density. Putting in the values
for the di�erent parameters for a typical star, one obtains
the result of Ref. [7] that m~g � 500 eV . In the discussion
of Ref. [7], the e�ect of the stellar plasma has not been
included. Incorporating these e�ects leads to the formula
(see Ref. [19], Eq. (5.9)) for energy loss per unit volume
of the star via S/P particles to be:

QS=P ' �em�
2

�
M~

m~g

�2

T 7I (5)

where I is a function which has been calculated by Ra�elt
[19] to be 1.84 for the Sun. Requiring that V�QS=P �
1033 ergs/sec. (V� being the volume of the Sun), we
get m~g � 50 eV which is a factor of 10 weaker than the
bound of Ref. [7]. Thus the excluded mass range for the
gravitinos that comes from this discussion is (10�3:5 �
m~g � 50) eV.
Let us now turn to the second new result of this paper

which constrains the gravitino masses below 10�3:5 eV or
so when the mean free path of S=P particles is less than
the solar radius. In this case, we use the argument of
Ref. [13], which goes as follows: if in photon scattering o�
electrons or protons, one produces a very weakly coupled
particle such as the S=P in addition to the photon a small
fraction of the time, the large number of photon electron
collisions undergone by the photon as it random walks
its way out of the star causes depletion of the photon
ux into a ux of the weakly coupled particle (in this
case S=P ). This depletion can be excessive unless the
S=P + e scattering rate is close to that of the Compton
scattering in which case back reaction S=P+e� ! +e�

regenerates the lost photons. In terms of the parameter
A de�ned as A � �+e!S=P+e

�+e
, the result of Ref. [13] is

that A � 0:1. For a star, we �nd

A ' �2��1emm
2
e

6�

�
M~

m~g

�2

� 2ln(E=mS=P )) (6)

The condition A � 0:1 then translates to m~g � 10�9

eV. However, for m~g � 3 � 10�6 eV, the S=P will de-
cay inside the star to photons and will regenerate the
lost photons. So the real upper limit from the above
argument is 10�6 eV. Note that there are lower limits
m~g � 10�6 eV to 10�4 eV from collider data [6] and
2�10�6 eV from present g�2 measurements [10] as well
as from the supernova [8]. Combining these results, we
get the results announced in the beginning that for the
class of models with superlight S=P particles accompa-
nying the superlight gravitino, any value of mass for the
superlight gravitino below 50 eV appears to be ruled out
for M~ ' 100 GeV provided the mass of the S=P parti-
cles are below one keV. This is the most stringent lower
bound on the gravitino mass to date in this special class
of models.
We also note that the existence of the scattering mode

 + e� ! S=P + e� e�ects the Helium synthesis in the
early universe unless the gravitinomass is in the eV range

or more. To see this let us compare the production rate
of S/P particles at the era of BBN with the Hubble ex-
pansion rate of the universe. This gives

5

3
(�2�em)

�
M~

m~g

�2

T 3 ' g
1=2
�

T 2

MP`
(7)

In order for nucleosynthesis results to be une�ected (or
for us to satisfy the bound on extra e�ective number of
neutrinos �N� � 1 [20]), we must have the S=P as well
as the gravitinos decouple before the temperature of the
universe reaches T ' 200 MeV. Using this value in Eq.
(7), we readily deduce that m~g � 1 eV. This is a much
stronger bound on the gravitino mass than was derived
in [9].
In conclusion, for a large class of supergravity models

where the superlight gravitino is accompanied by a su-
perlight scalar and pseudo-scalar particle, all gravitino
masses below 50 eV are ruled out from considerations of
energy loss from the stars for mS=P � keV and those
below 1 eV are ruled out by the BBN argument for
mS=P � 1 MeV . These results have important implica-
tion for the scale of supersymmetry breaking because of
the intimate connection between the gravitino mass and
the �SUSY stated in the beginning. The precise lower
limit on �SUSY however depends on the power p in the
formula, which depends on speci�c supergravity model;
for instance if p � 2, we �nd that �SUSY � 300 TeV from
the stellar bound and � 50 TeV from the BBN bound.
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